Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 409.220
1.
Nat Commun ; 15(1): 3104, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38600066

During embryonic development, pluripotent cells assume specialized identities by adopting particular gene expression profiles. However, systematically dissecting the relative contributions of mRNA transcription and degradation to shaping those profiles remains challenging, especially within embryos with diverse cellular identities. Here, we combine single-cell RNA-Seq and metabolic labeling to capture temporal cellular transcriptomes of zebrafish embryos where newly-transcribed (zygotic) and pre-existing (maternal) mRNA can be distinguished. We introduce kinetic models to quantify mRNA transcription and degradation rates within individual cell types during their specification. These models reveal highly varied regulatory rates across thousands of genes, coordinated transcription and destruction rates for many transcripts, and link differences in degradation to specific sequence elements. They also identify cell-type-specific differences in degradation, namely selective retention of maternal transcripts within primordial germ cells and enveloping layer cells, two of the earliest specified cell types. Our study provides a quantitative approach to study mRNA regulation during a dynamic spatio-temporal response.


Single-Cell Gene Expression Analysis , Zebrafish , Animals , Embryonic Development/genetics , Transcription, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Regulation, Developmental
2.
BMC Genomics ; 25(1): 357, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38600449

BACKGROUND: Broodiness significantly impacts poultry egg production, particularly notable in specific breeds such as the black-boned Silky, characterized by pronounced broodiness. An understanding of the alterations in ovarian signaling is essential for elucidating the mechanisms that influence broodiness. However, comparative research on the characteristics of long non-coding RNAs (lncRNAs) in the ovaries of broody chickens (BC) and high egg-laying chickens (GC) remains scant. In this investigation, we employed RNA sequencing to assess the ovarian transcriptomes, which include both lncRNAs and mRNAs, in eight Taihe Black-Bone Silky Fowls (TBsf), categorized into broody and high egg-laying groups. This study aims to provide a clearer understanding of the genetic underpinnings associated with broodiness and egg production. RESULTS: We have identified a total of 16,444 mRNAs and 18,756 lncRNAs, of which 349 mRNAs and 651 lncRNAs exhibited significantly different expression (DE) between the BC and GC groups. Furthermore, we have identified the cis-regulated and trans-regulated target genes of differentially abundant lncRNA transcripts and have constructed an lncRNA-mRNA trans-regulated interaction network linked to ovarian follicle development. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation analyses have revealed that DE mRNAs and the target genes of DE lncRNAs are associated with pathways including neuroactive ligand-receptor interaction, CCR6 chemokine receptor binding, G-protein coupled receptor binding, cytokine-cytokine receptor interaction, and ECM-receptor interaction. CONCLUSION: Our research presents a comprehensive compilation of lncRNAs and mRNAs linked to ovarian development. Additionally, it establishes a predictive interaction network involving differentially abundant lncRNAs and differentially expressed genes (DEGs) within TBsf. This significantly contributes to our understanding of the intricate interactions between lncRNAs and genes governing brooding behavior.


Chickens , RNA, Long Noncoding , Female , Animals , Chickens/genetics , Chickens/metabolism , Ovary/metabolism , RNA, Long Noncoding/metabolism , Gene Expression Profiling , RNA, Messenger/metabolism , Gene Regulatory Networks
3.
BMC Psychiatry ; 24(1): 269, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38600448

OBJECTIVE: The purpose of this study was to investigate the effects of escitalopram on the peripheral expression of hypothalamic-pituitary-adrenal (HPA) axis-related genes (FKBP51, HSP90, NR3C1 and POMC) and HPA-axis hormones in patients with panic disorder (PD). METHODS: Seventy-seven patients with PD were treated with escitalopram for 12 weeks. All participants were assessed for the severity of panic symptoms using the Panic Disorder Severity Scale (PDSS). The expression of HPA-axis genes was measured using real-time quantitative fluorescent PCR, and ACTH and cortisol levels were measured using chemiluminescence at baseline and after 12 weeks of treatment. RESULTS: At baseline, patients with PD had elevated levels of ACTH and cortisol, and FKBP51 expression in comparison to healthy controls (all p < 0.01). Correlation analysis revealed that FKBP51 expression levels were significantly positively related to cortisol levels and the severity of PD (all p < 0.01). Furthermore, baseline ACTH and cortisol levels, and FKBP51 expression levels were significantly reduced after 12 weeks of treatment, and the change in the PDSS score from baseline to post-treatment was significantly and positively related to the change in cortisol (p < 0.01). CONCLUSIONS: The results suggest that PD may be associated with elevated levels of ACTH and cortisol, and FKBP51 expression, and that all three biomarkers are substantially decreased in patients who have received escitalopram treatment.


Panic Disorder , Humans , Panic Disorder/drug therapy , Panic Disorder/genetics , Panic Disorder/diagnosis , Adrenocorticotropic Hormone/metabolism , Adrenocorticotropic Hormone/pharmacology , Hydrocortisone/metabolism , Escitalopram , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/metabolism , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , RNA, Messenger
4.
BMC Urol ; 24(1): 84, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38600527

BACKGROUND: Despite the rapid advances in modern medical technology, kidney renal clear cell carcinoma (KIRC) remains a challenging clinical problem in urology. Researchers urgently search for useful markers to break through the therapeutic conundrum due to its high lethality. Therefore, the study explores the value of ADH5 on overall survival (OS) and the immunology of KIRC. METHODS: The gene expression matrix and clinical information on ADH5 in the TCGA database were validated using external databases and qRT-PCR. To confirm the correlation between ADH5 and KIRC prognosis, univariate/multivariate Cox regression analysis was used. We also explored the signaling pathways associated with ADH5 in KIRC and investigated its association with immunity. RESULTS: The mRNA and protein levels showed an apparent downregulation of ADH5 in KIRC. Correlation analysis revealed that ADH5 was directly related to histological grade, clinical stage, and TMN stage (p < 0.05). Univariate and multivariate Cox regression analysis identified ADH5 as an independent factor affecting the prognosis of KIRC. Enrichment analysis looked into five ADH5-related signaling pathways. The results showed no correlation between ADH5 and TMB, TNB, and MSI. From an immunological perspective, ADH5 was found to be associated with the tumor microenvironment, immune cell infiltration, and immune checkpoints. Lower ADH5 expression was associated with greater responsiveness to immunotherapy. Single-cell sequencing revealed that ADH5 is highly expressed in immune cells. CONCLUSION: ADH5 could be a promising prognostic biomarker and a potential therapeutic target for KIRC. Besides, it was found that KIRC patients with low ADH5 expression were more sensitive to immunotherapy.


Alcohol Dehydrogenase , Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/therapy , Kidney , Kidney Neoplasms/genetics , Kidney Neoplasms/therapy , Prognosis , RNA, Messenger , Tumor Microenvironment , Alcohol Dehydrogenase/analysis
5.
ACS Nano ; 18(15): 10374-10387, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38567845

The advent of mRNA for nucleic acid (NA) therapeutics has unlocked many diverse areas of research and clinical investigation. However, the shorter intracellular half-life of mRNA compared with other NAs may necessitate more frequent dosing regimens. Because lipid nanoparticles (LNPs) are the principal delivery system used for mRNA, this could lead to tolerability challenges associated with an accumulated lipid burden. This can be addressed by introducing enzymatically cleaved carboxylic esters into the hydrophobic domains of lipid components, notably, the ionizable lipid. However, enzymatic activity can vary significantly with age, disease state, and species, potentially limiting the application in humans. Here we report an alternative approach to ionizable lipid degradability that relies on nonenzymatic hydrolysis, leading to a controlled and highly efficient lipid clearance profile. We identify highly potent examples and demonstrate their exceptional tolerability in multiple preclinical species, including multidosing in nonhuman primates (NHP).


Liposomes , Nanoparticles , Silicon , Animals , Humans , Ether , RNA, Messenger/genetics , RNA, Messenger/chemistry , Lipids/chemistry , Nanoparticles/chemistry , Ethyl Ethers , Ethers , RNA, Small Interfering/genetics
6.
J Med Internet Res ; 26: e53375, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38568723

BACKGROUND: The initiation of clinical trials for messenger RNA (mRNA) HIV vaccines in early 2022 revived public discussion on HIV vaccines after 3 decades of unsuccessful research. These trials followed the success of mRNA technology in COVID-19 vaccines but unfolded amid intense vaccine debates during the COVID-19 pandemic. It is crucial to gain insights into public discourse and reactions about potential new vaccines, and social media platforms such as X (formerly known as Twitter) provide important channels. OBJECTIVE: Drawing from infodemiology and infoveillance research, this study investigated the patterns of public discourse and message-level drivers of user reactions on X regarding HIV vaccines by analyzing posts using machine learning algorithms. We examined how users used different post types to contribute to topics and valence and how these topics and valence influenced like and repost counts. In addition, the study identified salient aspects of HIV vaccines related to COVID-19 and prominent anti-HIV vaccine conspiracy theories through manual coding. METHODS: We collected 36,424 English-language original posts about HIV vaccines on the X platform from January 1, 2022, to December 31, 2022. We used topic modeling and sentiment analysis to uncover latent topics and valence, which were subsequently analyzed across post types in cross-tabulation analyses and integrated into linear regression models to predict user reactions, specifically likes and reposts. Furthermore, we manually coded the 1000 most engaged posts about HIV and COVID-19 to uncover salient aspects of HIV vaccines related to COVID-19 and the 1000 most engaged negative posts to identify prominent anti-HIV vaccine conspiracy theories. RESULTS: Topic modeling revealed 3 topics: HIV and COVID-19, mRNA HIV vaccine trials, and HIV vaccine and immunity. HIV and COVID-19 underscored the connections between HIV vaccines and COVID-19 vaccines, as evidenced by subtopics about their reciprocal impact on development and various comparisons. The overall valence of the posts was marginally positive. Compared to self-composed posts initiating new conversations, there was a higher proportion of HIV and COVID-19-related and negative posts among quote posts and replies, which contribute to existing conversations. The topic of mRNA HIV vaccine trials, most evident in self-composed posts, increased repost counts. Positive valence increased like and repost counts. Prominent anti-HIV vaccine conspiracy theories often falsely linked HIV vaccines to concurrent COVID-19 and other HIV-related events. CONCLUSIONS: The results highlight COVID-19 as a significant context for public discourse and reactions regarding HIV vaccines from both positive and negative perspectives. The success of mRNA COVID-19 vaccines shed a positive light on HIV vaccines. However, COVID-19 also situated HIV vaccines in a negative context, as observed in some anti-HIV vaccine conspiracy theories misleadingly connecting HIV vaccines with COVID-19. These findings have implications for public health communication strategies concerning HIV vaccines.


AIDS Vaccines , COVID-19 , HIV Infections , Humans , COVID-19 Vaccines , Pandemics , Data Mining , COVID-19/epidemiology , COVID-19/prevention & control , RNA, Messenger , HIV Infections/prevention & control
7.
Brain Behav ; 14(5): e3412, 2024 May.
Article En | MEDLINE | ID: mdl-38664915

PURPOSE: Obsessive-compulsive disorder (OCD) is a complex psychiatric disorder. Genetic and broad environmental factors are common risk factors for OCD. The purpose of this study is to explore the molecular mechanism of OCD and to find new molecular targets for the diagnosis and management of OCD. METHODS: All data were downloaded from public dataset. Key modules and candidate key mRNAs were identified based on weighted gene co-expression network analysis (WGCNA). The "limma" R package was used for differential expression analysis of mRNAs. Subsequently, functional enrichment analysis of differentially expressed mRNAs (DEmRNAs) was also carried out. In addition, a diagnostic model was constructed. Finally, the infiltration level of immune cells in OCD and its correlation with multicentric key DEmRNAs were analyzed. RESULTS: Green and red modules were selected as the hub modules. A total of 447 mRNAs were considered candidate key mRNAs according to GS > 0.2 and MM > 0.3. A total of 26 DEmRNAs in the same direction were identified in the GSE60190 and GSE78104 datasets. A total of 26 DEmRNAs were intersected with candidate key mRNAs in WGCNA to obtain 10 intersection DEmRNAs (HSPB1, ITPK1, CBX7, PPP1R10, TAOK1, PISD, MKNK2, RWDD1, PPA1, and RELN). However, only four DEmRNAs (HSPB1, TAOK1, MKNK2, and PPA1) predicted related drugs. Subsequently, receiver operating characteristic analysis shows that the diagnostic model has high diagnostic value. Moreover, six multicentric key DEmRNAs (SNRPF, SNRNP70, PRPF8, NOP56, EPRS, and CCT2) were screened by UpSet package. Finally, six multicentric key DEmRNAs were found to be associated with immune cells. CONCLUSION: The key molecules obtained in this study lay a foundation for further research on the molecular mechanism of OCD.


Gene Regulatory Networks , Obsessive-Compulsive Disorder , RNA, Messenger , Signal Transduction , Humans , Obsessive-Compulsive Disorder/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/genetics , Gene Expression Profiling
8.
Eur J Med Res ; 29(1): 233, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622672

BACKGROUND: Atrial fibrillation (AF) is associated with circulating inflammation. Short-chain fatty acids (SCFAs) derived from gut microbiota (GM) regulate leukocyte function and inhibit the release of inflammatory cytokines, which are partly mediated by the G-protein-coupled receptor 43 (GPR43) signaling. This study aimed to investigate the expression of GPR43/NOD-like receptors family pyrin domain containing 3 (NLRP3) in leukocytes and the interaction with intestinal SCFAs levels in AF patients. METHODS: Expressions of GPR43 and NLRP3 mRNA in peripheral blood leukocytes from 23 AF patients and 25 non-AF controls were detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Expressions of leukocyte GPR43 and NLRP3 protein were evaluated by western blot analysis. The levels of plasma IL-1ß were measured by enzyme-linked immunosorbent assay (ELISA). The fecal SCFAs levels based on GC/MS metabolome of corresponding 21 controls and 14 AF patients were acquired from our published dataset. To evaluate the expression of NLRP3 and GPR43 and the release of IL-1ß, human THP-1 cells were stimulated with or without SCFAs (acetate, propionate, and butyrate), lipopolysaccharide (LPS), and nigericin in vitro, respectively. RESULTS: Compared to the controls, the mRNA expression in peripheral leukocytes was significantly reduced in AF patients (P = 0.011) coupled with the increase in downstream leukocyte NLRP3 mRNA expression (P = 0.007) and plasma IL-1ß levels (P < 0.001), consistent with changes in GPR43 and NLRP3 protein expression. Furthermore, leukocyte GPR43 mRNA levels were positively correlated with fecal GM-derived acetic acid (P = 0.046) and negatively correlated with NLRP3 mRNA expression (P = 0.024). In contrast to the negative correlation between left atrial diameter (LAD) and GPR43 (P = 0.008), LAD was positively correlated with the leukocyte NLRP3 mRNA levels (P = 0.024). Subsequent mediation analysis showed that 68.88% of the total effect of intestinal acetic acid on AF might be mediated by leukocyte GPR43/NLRP3. The constructed GPR43-NLRP3 score might have a predictive potential for AF detection (AUC = 0.81, P < 0.001). Moreover, SCFAs treatment increased GPR43 expression and remarkably reduced LPS/nigericin-induced NLRP3 expression and IL-1ß release in human THP-1 cells in vitro. CONCLUSIONS: Disrupted interactions between GPR43 and NLRP3 expression in peripheral blood leukocytes, associated with reduced intestinal GM-derived SCFAs, especially acetic acid, may be involved in AF development and left atrial enlargement by enhancing circulating inflammation.


Atrial Fibrillation , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , Acetates/metabolism , Fatty Acids, Volatile/metabolism , Inflammation/metabolism , Leukocytes/metabolism , Lipopolysaccharides/pharmacology , Nigericin/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
9.
Mil Med Res ; 11(1): 22, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622688

BACKGROUND: Liver ischemia/reperfusion (I/R) injury is usually caused by hepatic inflow occlusion during liver surgery, and is frequently observed during war wounds and trauma. Hepatocyte ferroptosis plays a critical role in liver I/R injury, however, it remains unclear whether this process is controlled or regulated by members of the DEAD/DExH-box helicase (DDX/DHX) family. METHODS: The expression of DDX/DHX family members during liver I/R injury was screened using transcriptome analysis. Hepatocyte-specific Dhx58 knockout mice were constructed, and a partial liver I/R operation was performed. Single-cell RNA sequencing (scRNA-seq) in the liver post I/R suggested enhanced ferroptosis by Dhx58hep-/-. The mRNAs and proteins associated with DExH-box helicase 58 (DHX58) were screened using RNA immunoprecipitation-sequencing (RIP-seq) and IP-mass spectrometry (IP-MS). RESULTS: Excessive production of reactive oxygen species (ROS) decreased the expression of the IFN-stimulated gene Dhx58 in hepatocytes and promoted hepatic ferroptosis, while treatment using IFN-α increased DHX58 expression and prevented ferroptosis during liver I/R injury. Mechanistically, DHX58 with RNA-binding activity constitutively associates with the mRNA of glutathione peroxidase 4 (GPX4), a central ferroptosis suppressor, and recruits the m6A reader YT521-B homology domain containing 2 (YTHDC2) to promote the translation of Gpx4 mRNA in an m6A-dependent manner, thus enhancing GPX4 protein levels and preventing hepatic ferroptosis. CONCLUSIONS: This study provides mechanistic evidence that IFN-α stimulates DHX58 to promote the translation of m6A-modified Gpx4 mRNA, suggesting the potential clinical application of IFN-α in the prevention of hepatic ferroptosis during liver I/R injury.


Ferroptosis , Reperfusion Injury , Animals , Mice , Dichlorodiphenyl Dichloroethylene , Hepatocytes , Interferon-alpha , RNA , RNA, Messenger
10.
BMC Bioinformatics ; 25(1): 159, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38643080

BACKGROUND: MicroRNAs play a critical role in regulating gene expression by binding to specific target sites within gene transcripts, making the identification of microRNA targets a prominent focus of research. Conventional experimental methods for identifying microRNA targets are both time-consuming and expensive, prompting the development of computational tools for target prediction. However, the existing computational tools exhibit limited performance in meeting the demands of practical applications, highlighting the need to improve the performance of microRNA target prediction models. RESULTS: In this paper, we utilize the most popular natural language processing and computer vision technologies to propose a novel approach, called TEC-miTarget, for microRNA target prediction based on transformer encoder and convolutional neural networks. TEC-miTarget treats RNA sequences as a natural language and encodes them using a transformer encoder, a widely used encoder in natural language processing. It then combines the representations of a pair of microRNA and its candidate target site sequences into a contact map, which is a three-dimensional array similar to a multi-channel image. Therefore, the contact map's features are extracted using a four-layer convolutional neural network, enabling the prediction of interactions between microRNA and its candidate target sites. We applied a series of comparative experiments to demonstrate that TEC-miTarget significantly improves microRNA target prediction, compared with existing state-of-the-art models. Our approach is the first approach to perform comparisons with other approaches at both sequence and transcript levels. Furthermore, it is the first approach compared with both deep learning-based and seed-match-based methods. We first compared TEC-miTarget's performance with approaches at the sequence level, and our approach delivers substantial improvements in performance using the same datasets and evaluation metrics. Moreover, we utilized TEC-miTarget to predict microRNA targets in long mRNA sequences, which involves two steps: selecting candidate target site sequences and applying sequence-level predictions. We finally showed that TEC-miTarget outperforms other approaches at the transcript level, including the popular seed match methods widely used in previous years. CONCLUSIONS: We propose a novel approach for predicting microRNA targets at both sequence and transcript levels, and demonstrate that our approach outperforms other methods based on deep learning or seed match. We also provide our approach as an easy-to-use software, TEC-miTarget, at https://github.com/tingpeng17/TEC-miTarget . Our results provide new perspectives for microRNA target prediction.


Deep Learning , MicroRNAs , MicroRNAs/genetics , MicroRNAs/metabolism , Neural Networks, Computer , Software , RNA, Messenger/genetics
11.
Eur J Med Res ; 29(1): 244, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38643140

BACKGROUND: Atrial fibrillation (AF) is the most common cardiac arrhythmia worldwide. Catheter ablation has become a crucial treatment for AF. However, there is a possibility of atrial fibrillation recurrence after catheter ablation. Our study sought to elucidate the role of lncRNA‒mRNA regulatory networks in late AF recurrence after catheter ablation. METHODS: We conducted RNA sequencing to profile the transcriptomes of 5 samples from the presence of recurrence after AF ablation (P-RAF) and 5 samples from the absence of recurrence after AF ablation (A-RAF). Differentially expressed genes (DEGs) and long noncoding RNAs (DE-lncRNAs) were analyzed using the DESeq2 R package. The functional correlations of the DEGs were assessed through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. A protein‒protein interaction (PPI) network was constructed using STRING and Cytoscape. We also established a lncRNA‒mRNA regulatory network between DE-lncRNAs and DEGs using BEDTools v2.1.2 software and the Pearson correlation coefficient method. To validate the high-throughput sequencing results of the hub genes, we conducted quantitative real-time polymerase chain reaction (qRT‒PCR) experiments. RESULTS: A total of 28,528 mRNAs and 42,333 lncRNAs were detected. A total of 96 DEGs and 203 DE-lncRNAs were identified between the two groups. GO analysis revealed that the DEGs were enriched in the biological processes (BPs) of "regulation of immune response" and "regulation of immune system process", the cellular components (CCs) of "extracellular matrix" and "cell‒cell junction", and the molecular functions (MFs) of "signaling adaptor activity" and "protein-macromolecule adaptor activity". According to the KEGG analysis, the DEGs were associated with the "PI3K-Akt signaling pathway" and "MAPK signaling pathway." Nine hub genes (MMP9, IGF2, FGFR1, HSPG2, GZMB, PEG10, GNLY, COL6A1, and KCNE3) were identified through the PPI network. lncRNA-TMEM51-AS1-201 was identified as a core regulator in the lncRNA‒mRNA regulatory network, suggesting its potential impact on the recurrence of AF after catheter ablation through the regulation of COL6A1, FGFR1, HSPG2, and IGF2. CONCLUSIONS: The recurrence of atrial fibrillation after catheter ablation may be associated with immune responses and fibrosis, with the extracellular matrix playing a crucial role. TMEM51-AS1-201 has been identified as a potential key target for AF recurrence after catheter ablation.


Atrial Fibrillation , Catheter Ablation , MicroRNAs , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Gene Regulatory Networks , Atrial Fibrillation/genetics , Atrial Fibrillation/surgery , RNA, Messenger/genetics , Phosphatidylinositol 3-Kinases , MicroRNAs/genetics
12.
MMWR Morb Mortal Wkly Rep ; 73(15): 330-338, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38635481

Pediatric COVID-19 vaccination is effective in preventing COVID-19-related hospitalization, but duration of protection of the original monovalent vaccine during SARS-CoV-2 Omicron predominance merits evaluation, particularly given low coverage with updated COVID-19 vaccines. During December 19, 2021-October 29, 2023, the Overcoming COVID-19 Network evaluated vaccine effectiveness (VE) of ≥2 original monovalent COVID-19 mRNA vaccine doses against COVID-19-related hospitalization and critical illness among U.S. children and adolescents aged 5-18 years, using a case-control design. Too few children and adolescents received bivalent or updated monovalent vaccines to separately evaluate their effectiveness. Most case-patients (persons with a positive SARS-CoV-2 test result) were unvaccinated, despite the high frequency of reported underlying conditions associated with severe COVID-19. VE of the original monovalent vaccine against COVID-19-related hospitalizations was 52% (95% CI = 33%-66%) when the most recent dose was administered <120 days before hospitalization and 19% (95% CI = 2%-32%) if the interval was 120-364 days. VE of the original monovalent vaccine against COVID-19-related hospitalization was 31% (95% CI = 18%-43%) if the last dose was received any time within the previous year. VE against critical COVID-19-related illness, defined as receipt of noninvasive or invasive mechanical ventilation, vasoactive infusions, extracorporeal membrane oxygenation, and illness resulting in death, was 57% (95% CI = 21%-76%) when the most recent dose was received <120 days before hospitalization, 25% (95% CI = -9% to 49%) if it was received 120-364 days before hospitalization, and 38% (95% CI = 15%-55%) if the last dose was received any time within the previous year. VE was similar after excluding children and adolescents with documented immunocompromising conditions. Because of the low frequency of children who received updated COVID-19 vaccines and waning effectiveness of original monovalent doses, these data support CDC recommendations that all children and adolescents receive updated COVID-19 vaccines to protect against severe COVID-19.


COVID-19 Vaccines , COVID-19 , Humans , Adolescent , Child , United States/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , mRNA Vaccines , Vaccine Efficacy , SARS-CoV-2 , Hospitalization , RNA, Messenger
13.
PLoS One ; 19(4): e0297833, 2024.
Article En | MEDLINE | ID: mdl-38635725

Influenza viruses cause epidemics and can cause pandemics with substantial morbidity with some mortality every year. Seasonal influenza vaccines have incomplete effectiveness and elicit a narrow antibody response that often does not protect against mutations occurring in influenza viruses. Thus, various vaccine approaches have been investigated to improve safety and efficacy. Here, we evaluate an mRNA influenza vaccine encoding hemagglutinin (HA) proteins in a BALB/c mouse model. The results show that mRNA vaccination elicits neutralizing and serum antibodies to each influenza virus strain contained in the current quadrivalent vaccine that is designed to protect against four different influenza viruses including two influenza A viruses (IAV) and two influenza B (IBV), as well as several antigenically distinct influenza virus strains in both hemagglutination inhibition assay (HAI) and virus neutralization assays. The quadrivalent mRNA vaccines had antibody titers comparable to the antibodies elicited by the monovalent vaccines to each tested virus regardless of dosage following an mRNA booster vaccine. Mice vaccinated with mRNA encoding an H1 HA had decreased weight loss and decreased lung viral titers compared to mice not vaccinated with an mRNA encoding an H1 HA. Overall, this study demonstrates the efficacy of mRNA-based seasonal influenza vaccines are their potential to replace both the currently available split-inactivated, and live-attenuated seasonal influenza vaccines.


Influenza A virus , Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Animals , Mice , Humans , Hemagglutinins , mRNA Vaccines , Antibodies, Viral , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza, Human/prevention & control , RNA, Messenger/genetics
14.
Cell Rep ; 43(4): 114061, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38578831

Brain cells release and take up small extracellular vesicles (sEVs) containing bioactive nucleic acids. sEV exchange is hypothesized to contribute to stereotyped spread of neuropathological changes in the diseased brain. We assess mRNA from sEVs of postmortem brain from non-diseased (ND) individuals and those with Alzheimer's disease (AD) using short- and long-read sequencing. sEV transcriptomes are distinct from those of bulk tissue, showing enrichment for genes including mRNAs encoding ribosomal proteins and transposable elements such as human-specific LINE-1 (L1Hs). AD versus ND sEVs show enrichment of inflammation-related mRNAs and depletion of synaptic signaling mRNAs. sEV mRNAs from cultured murine primary neurons, astrocytes, or microglia show similarities to human brain sEVs and reveal cell-type-specific packaging. Approximately 80% of neural sEV transcripts sequenced using long-read sequencing are full length. Motif analyses of sEV-enriched isoforms elucidate RNA-binding proteins that may be associated with sEV loading. Collectively, we show that mRNA in brain sEVs is intact, selectively packaged, and altered in disease.


Alzheimer Disease , Brain , Extracellular Vesicles , RNA, Messenger , Extracellular Vesicles/metabolism , Humans , RNA, Messenger/metabolism , RNA, Messenger/genetics , Brain/metabolism , Animals , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Neurons/metabolism , Astrocytes/metabolism , Microglia/metabolism , Transcriptome/genetics , Mice, Inbred C57BL
15.
Anal Bioanal Chem ; 416(12): 2941-2949, 2024 May.
Article En | MEDLINE | ID: mdl-38594392

Messenger RNA (mRNA) vaccines represent a landmark in vaccinology, especially with their success in COVID-19 vaccines, which have shown great promise for future vaccine development and disease prevention. As a platform technology, synthetic mRNA can be produced with high fidelity using in vitro transcription (IVT). Magnesium plays a vital role in the IVT process, facilitating the phosphodiester bond formation between adjacent nucleotides and ensuring accurate transcription to produce high-quality mRNA. The development of the IVT process has prompted key inquiries about in-process characterization of magnesium ion (Mg++) consumption, relating to the RNA polymerase (RNAP) activation, fed-batch mode production yield, and mRNA quality. Hence, it becomes crucial to monitor the free Mg++ concentration throughout the IVT process. However, no free Mg++ analysis method has been reported for complex IVT reactions. Here we report a robust capillary zone electrophoresis (CZE) method with indirect UV detection. The assay allows accurate quantitation of free Mg++ for the complex IVT reaction where it is essential to preserve IVT samples in their native-like state during analysis to avoid dissociation of bound Mg complexes. By applying this CZE method, the relationships between free Mg++ concentration, the mRNA yield, and dsRNA impurity level were investigated. Such mechanistic understanding facilitates informed decisions regarding the quantity and timing of feeding starting materials to increase the yield. Furthermore, this approach can serve as a platform method for analyzing the free Mg++ in complex sample matrices where preserving the native-like state of Mg++ binding is key for accurate quantitation.


Electrophoresis, Capillary , Magnesium , RNA, Messenger , Transcription, Genetic , Electrophoresis, Capillary/methods , Magnesium/analysis , RNA, Messenger/genetics , RNA, Messenger/analysis , SARS-CoV-2/genetics , Humans
16.
Cell Rep ; 43(4): 114069, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38602876

The integrated stress response (ISR) is a key cellular signaling pathway activated by environmental alterations that represses protein synthesis to restore homeostasis. To prevent sustained damage, the ISR is counteracted by the upregulation of growth arrest and DNA damage-inducible 34 (GADD34), a stress-induced regulatory subunit of protein phosphatase 1 that mediates translation reactivation and stress recovery. Here, we uncover a novel ISR regulatory mechanism that post-transcriptionally controls the stability of PPP1R15A mRNA encoding GADD34. We establish that the 3' untranslated region of PPP1R15A mRNA contains an active AU-rich element (ARE) recognized by proteins of the ZFP36 family, promoting its rapid decay under normal conditions and stabilization for efficient expression of GADD34 in response to stress. We identify the tight temporal control of PPP1R15A mRNA turnover as a component of the transient ISR memory, which sets the threshold for cellular responsiveness and mediates adaptation to repeated stress conditions.


3' Untranslated Regions , Protein Phosphatase 1 , RNA Stability , RNA, Messenger , Stress, Physiological , Protein Phosphatase 1/metabolism , Protein Phosphatase 1/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Humans , 3' Untranslated Regions/genetics , RNA Stability/genetics , Stress, Physiological/genetics , Animals , AU Rich Elements/genetics , Adaptation, Physiological/genetics , Tristetraprolin/metabolism , Tristetraprolin/genetics , Mice , HEK293 Cells
17.
Cell Rep ; 43(4): 114098, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38625793

Developing an effective mRNA therapeutic often requires maximizing protein output per delivered mRNA molecule. We previously found that coding sequence (CDS) design can substantially affect protein output, with mRNA variants containing more optimal codons and higher secondary structure yielding the highest protein outputs due to their slow rates of mRNA decay. Here, we demonstrate that CDS-dependent differences in translation initiation and elongation rates lead to differences in translation- and deadenylation-dependent mRNA decay rates, thus explaining the effect of CDS on mRNA half-life. Surprisingly, the most stable and highest-expressing mRNAs in our test set have modest initiation/elongation rates and ribosome loads, leading to minimal translation-dependent mRNA decay. These findings are of potential interest for optimization of protein output from therapeutic mRNAs, which may be achieved by attenuating rather than maximizing ribosome load.


Protein Biosynthesis , RNA Stability , RNA, Messenger , Ribosomes , Ribosomes/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , Humans
18.
Cell Rep ; 43(4): 114074, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38625794

Post-transcriptional mRNA regulation shapes gene expression, yet how cis-elements and mRNA translation interface to regulate mRNA stability is poorly understood. We find that the strength of translation initiation, upstream open reading frame (uORF) content, codon optimality, AU-rich elements, microRNA binding sites, and open reading frame (ORF) length function combinatorially to regulate mRNA stability. Machine-learning analysis identifies ORF length as the most important conserved feature regulating mRNA decay. We find that Upf1 binds poorly translated and untranslated ORFs, which are associated with a higher decay rate, including mRNAs with uORFs and those with exposed ORFs after stop codons. Our study emphasizes Upf1's converging role in surveilling mRNAs with exposed ORFs that are poorly translated, such as mRNAs with long ORFs, ORF-like 3' UTRs, and mRNAs containing uORFs. We propose that Upf1 regulation of poorly/untranslated ORFs provides a unifying mechanism of surveillance in regulating mRNA stability and homeostasis in an exon-junction complex (EJC)-independent nonsense-mediated decay (NMD) pathway that we term ORF-mediated decay (OMD).


Open Reading Frames , RNA Helicases , RNA Stability , RNA, Messenger , Trans-Activators , Open Reading Frames/genetics , Humans , RNA Helicases/metabolism , RNA Helicases/genetics , Trans-Activators/metabolism , Trans-Activators/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Protein Biosynthesis , Nonsense Mediated mRNA Decay , 3' Untranslated Regions/genetics , HeLa Cells
19.
J Chromatogr A ; 1722: 464885, 2024 May 10.
Article En | MEDLINE | ID: mdl-38631223

Heightened interest in messenger RNA (mRNA) therapeutics has accelerated the need for analytical methodologies that facilitate the production of supplies for clinical trials. Forced degradation studies are routinely conducted to provide an understanding of potential weak spots in the molecule that are exploited by stresses encountered during bulk purification, production, shipment, and storage. Consequently, temperature fluctuations and excursions are often experienced during these unit operations and may accelerate mRNA degradation. Here, we present a concise panel of chromatography-based stability-indicating assays for evaluating thermally stressed in vitro transcribed (IVT) mRNA as part of a forced degradation study. We found that addition of EDTA to the mRNAs prior to heat exposure reduced the extent of degradation, suggesting that transcripts may be fragmenting via a divalent metal-ion mediated pathway. Trace divalent metal contamination that can accelerate RNA instability is likely carried over from upstream steps. We demonstrate the application of these methods to evaluate the critical quality attributes (CQAs) of mRNAs as well as to detect intrinsic process- and product-related impurities.


RNA Stability , RNA, Messenger , Edetic Acid/chemistry , Transcription, Genetic , Hot Temperature
20.
PLoS One ; 19(4): e0300524, 2024.
Article En | MEDLINE | ID: mdl-38635805

To address the need for multivalent vaccines against Coronaviridae that can be rapidly developed and manufactured, we compared antibody responses against SARS-CoV, SARS-CoV-2, and several variants of concern in mice immunized with mRNA-lipid nanoparticle vaccines encoding homodimers or heterodimers of SARS-CoV/SARS-CoV-2 receptor-binding domains. All vaccine constructs induced robust anti-RBD antibody responses, and the heterodimeric vaccine elicited an IgG response capable of cross-neutralizing SARS-CoV, SARS-CoV-2 Wuhan-Hu-1, B.1.351 (beta), and B.1.617.2 (delta) variants.


COVID-19 , SARS-CoV-2 , Animals , Mice , Humans , SARS-CoV-2/genetics , Vaccines, Combined , Antibodies, Neutralizing , 60547 , Spike Glycoprotein, Coronavirus/genetics , COVID-19/prevention & control , RNA, Messenger/genetics , mRNA Vaccines , Lipids , Antibodies, Viral
...